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Abstract
Transformer has obtained promising results on cognitive speech
signal processing field, which is of interest in various applica-
tions ranging from emotion to neurocognitive disorder analysis.
However, most works treat speech signal as a whole, leading
to the neglect of the pronunciation structure that is unique to
speech and reflects the cognitive process. Meanwhile, Trans-
former has heavy computational burden due to its full atten-
tion operation. In this paper, a hierarchical efficient framework,
called SpeechFormer, which considers the structural character-
istics of speech, is proposed and can be served as a general-
purpose backbone for cognitive speech signal processing. The
proposed SpeechFormer consists of frame, phoneme, word and
utterance stages in succession, each performing a neighbor-
ing attention according to the structural pattern of speech with
high computational efficiency. SpeechFormer is evaluated on
speech emotion recognition (IEMOCAP & MELD) and neu-
rocognitive disorder detection (Pitt & DAIC-WOZ) tasks, and
the results show that SpeechFormer outperforms the standard
Transformer-based framework while greatly reducing the com-
putational cost. Furthermore, our SpeechFormer achieves com-
parable results to the state-of-the-art approaches.
Index Terms: hierarchical framework, speech signal process-
ing, speech emotion recognition, cognitive disorder detection

1. Introduction
Speech signal is able to express the most information in the
simplest way [1]. Speech based emotion and neurocognitive
disorder analysis, which is collectively referred to as cognitive
speech signal processing (CoSSP), has covered a wide area of
applications, including speech emotion recognition (SER), de-
pression classification, Alzheimer’s disease (AD) detection and
so on. Because of its broad application value, CoSSP is becom-
ing an increasing interest in speech signal processing field.

In the last century, Hidden Markov model, which is a statis-
tical Markov model and assumes the system being modeled to
be a Markov process, is proposed to model speech signal [2, 3].
After that, more and more machine learning methods, such as
decision tree [4, 5] and restricted Boltzmann machine [6, 7] and
so on, are applied to CoSSP. Recently, with the development
of deep learning, Convolutional Neural Network [8, 9, 10, 11],
Recurrent Neural Network and its variants [12, 13, 14, 15] are
proposed and achieve promising results. After that, deep learn-
ing methods deliver superior performances in CoSSP field.

Inspired by the global attention mechanism, Transformer
[16], which is outstanding in modeling long-range dependen-
cies in the sequence, has achieved great success in natural lan-
guage processing (NLP). Although the original Transformer is
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Figure 1: The natural structure of a speech signal, in which sev-
eral frames constitute a phoneme, several phonemes constitute
a word, and multiple words form an utterance in speech signal.

designed for machine translation task in NLP, researchers are
active in investigating its adaptation to many other fields, specif-
ically computer vision [17, 18]. Certainly, several attempts also
have been made in CoSSP field [19, 20, 21, 22].

However, most studies omit the natural characteristics of
speech while using the attention with Transformer, leading to
the neglect of the pronunciation structure that is unique to
speech and conveys lots of messages. For example, even if I
don’t understand Greek, I can still determine the emotion in a
Greek recording by utilizing the characteristics in speech, such
as articulation, prolongation and the dynamic change of speech
sound. Meanwhile, Transformer has heavy computational bur-
den, as the computational complexity of its full attention is
quadratic to input length. In other words, the standard Trans-
former needs to incorporate the characteristics of speech before
all its performance can be exploited in CoSSP field.

To solve the above problems, we should rethink the struc-
ture of speech signal first. As shown in Figure 1, we can observe
that an utterance consists of several words, a word consists of
several phonemes (e.g. word ‘WANT’ includes phonemes ‘W’,
‘AA1’, ‘N’ and ‘T’) and a phoneme consists of several frames
(e.g. phoneme ‘AA1’ includes four frames). This progressive
structure reveals the importance of the interaction between adja-
cent elements and indicates that we can model the speech signal
hierarchically based on the nature of pronunciation. Therefore,
a hierarchical framework, called SpeechFormer, which consists
of frame, phoneme, word and utterance stages, is proposed to
model the signal step-by-step. Firstly, we capture the frame,
phoneme and word-level features through the first three stages
and merge the features between two successive stages, both of
which are performed under the instruction of the characteris-
tics of speech with high computational efficiency. At last, an
utterance stage is applied to gather all the word-level features
and generate an utterance-level representation for classification.
The contributions of this paper can be summarized as follows:
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Figure 2: Overview of the proposed SpeechFormer framework.

• We propose a hierarchical efficient framework, called
SpeechFormer, to serve as a general-purpose backbone
for cognitive speech signal processing. SpeechFormer
improves the modeling process by incorporating the
characteristics of speech, which follows the natural pro-
nunciation structure of the input speech signal.

• We evaluate SpeechFormer on IEMOCAP [23], MELD
[24], Pitt [25] and DAIC-WOZ [26], and demonstrate
that SpeechFormer substantially outperforms the vanilla
Transformer-based framework in terms of performance
and computational efficiency. Moreovre, SpeechFormer
achieves comparable results to the state-of-the-art ap-
proaches. Our codes are publicly available at https:
//github.com/HappyColor/SpeechFormer.

2. Methodology
The proposed SpeechFormer, as shown in Figure 2, mainly
consists of four stages and three merging blocks (M-Blocks).
In which, frame stage (F-Stage), phoneme stage (P-Stage) and
word stage (W-Stage) are used to learn features of different lev-
els, and utterance stage (U-Stage) aims to generate a global rep-
resentation for classification. Three M-Blocks refine the redun-
dant features between two consecutive stages by reducing the
number of tokens. Moreover, an additional branch is employed
to provide the statistical natures of speech signal.

2.1. Vanilla Transformer

Transformer (refers only to its encoder part in this paper), as
shown in the left part of Figure 3, consists of two sub-layers of
Multi-Head Self-Attention (MSA) and Feed-Forward Network
(FFN). MSA is at the core of Transformer and we will give a
brief introduction to it. More details can be found in [16].

2.1.1. MSA in vanilla Transformer

For a sequential input x ∈ RT×dm , where T and dm are the
length and dimension of input, respectively. Transformer first
obtains query Q, key K and value V by applying three projec-
tions to x . QKV are further divided into h parts, producing dh
dimensional features, where dh = dm/h and h is the number of
heads. Each head performs Single-Head Self-Attention (SSA)
and the output value of each head is concatenated to form the
final output of MSA. SSA is depicted as fellows:

SSA(Q,K,V) = Softmax(
QKT

√
dh

)V (1)
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Figure 3: The structure of the vanilla Transformer (left) and the
baseline framework used in this paper (right). Positional en-
coding and layer normalization [27] are not plotted for brevity.

2.2. SpeechFormer framework

The vanilla Transformer-based framework, illustrated in the
right part of Figure 3, neglects the implicit relations in speech.
Conversely, our SpeechFormer, shown in Figure 2, makes use
of these relations to model speech signal in a hierarchical man-
ner. To be specific, SpeechFormer block employs Speech-based
Multi-Head Self-Attention (Speech-MSA) to capture the rela-
tions between adjacent elements. Merging block is applied to
refine the redundant feature. Both of them are performed under
the instruction of the statistical characteristics of speech.

2.2.1. Statistical characteristics of speech

Elements of speech signal. Phoneme is the minimal sound
unit in language, recycled to form all our spoken words. Mul-
tiple words are arranged together to form an utterance that is
recorded in a wave file. In data format terms, the digital speech
signal is divided into numerous frames. Each frame contains
information at that particular point in time. Therefore, frame is
the basic processing unit in digital system, which then gradually
forms a phoneme, a word, and finally an utterance.
Time duration. The frame length is literally the size of the
window during, which can be set manually. Phonemes are of
different lengths, varying from 50 ms to 200 ms. To analyse
the duration of word, we use P2FA [28] to extract the phonemes
from corpora used and find that more than 90% of words contain
less than 5 phonemes. Thus, the duration of word is considered
as 250 ms to 1000 ms (5× the duration of phoneme). Time
duration divided by hop is the approximate number of tokens in
the feature, where hop indicates the feature’s hop length.
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Figure 4: Speech-based Multi-Head Self-Attention (Speech-
MSA) at time step t. Tw is a statistical value based on speech
characteristics. Head number here is set to 1 for illustration.

2.2.2. Speech-MSA in SpeechFormer block

The only difference between SpeechFormer block and standard
Transformer is the replacement of MSA with Speech-MSA. As
shown in Figure 4, Speech-MSA applies a window Tw to limit
the full attention computation to a small scope of adjacent to-
kens, which can greatly relieve the computational burden. Fur-
thermore, as displayed in Table 1, the value of Tw ensures that
the Speech-MSA in the first three stages can learn the inter-
actions between neighboring frames, phonemes and words, re-
spectively. And in U-Stage, Tw is set to the length of its input
such that a global representation is learnt. The complete output
of Speech-MSA is calculated by following steps:

(i) Apply for a window Tw according to the current stage-
level. The value and explanation are shown in Table 1.

(ii) Select the (t − Tw
2
)-th to (t + Tw

2
)-th tokens in K, each

performing a scaled dot-product with the t-th token in Q
to produce a score. All the scores are concatenated and
scaled by Softmax to generate the attention weights.

(iii) Fetch the (t − Tw
2
)-th to (t + Tw

2
)-th tokens in V and

calculate the sum of each token multiplied by its weight.
The result is the output of the t-th token in Speech-MSA.

(iv) Return to (ii) until the value of t varies from 1 to T .

2.2.3. Merging block in SpeechFormer framework

The merging blocks between each two successive stages refine
features under the instruction of the characteristics of speech,
making a hierarchical framework which follows the natural
structure of speech signal. Each merging block consists of an
average pooling layer and a linear layer in succession. The first
layer merges M consecutive tokens in the input, where M is
the merging scale, and the second layer expands the embed-
ding dimension of the input by a factor of r. Each merging
block aims to prepare the appropriate feature for its following
stage as input. Specifically, each token should represent a sub-
phoneme in P-Stage such that P-Stage can model the interaction
between neighboring phonemes. Therefore, the M1 before P-
Stage should be no less than the minimum length of phoneme.
Similarly, the M2 before W-Stage should be no less than the
minimum length of word. More details are displayed in Table 1.

Table 1: The values of window Tw and merging scale M . Sta-
tistical duration is used instead of the actual duration.

Module Tw or M Description
F-Stage 50 ms / hop1 Min. length of phoneme

M-Block 50 ms / hop1 Min. length of phoneme
P-Stage 400 ms / hop2 2×Max. length of phoneme

M-Block 250 ms / hop2 Min. length of word
W-Stage 2000 ms / hop3 2×Max. length of word
M-Block 1000 ms / hop3 Max. length of word
U-Stage T Input length
Notes: hop2 = M1hop1, hop3 = M2hop2

Table 2: The training settings on four corpora. The learning
rate drops to 1% of the original gradually by cosine anneal-
ing. WA: weighted accuracy, UA: unweighted arruracy, WF1:
weighted average F1, MF1: macro average F1.

Dataset Epoch Batch LR Criterion
IEMOCAP 120 32 0.0005 WA & UA

MELD 120 32 0.001 WF1
Pitt# 80 32 0.0005 WA & UA

DAIC-WOZ# 60 16 0.0005 MF1
# Segment-level samples are used for training, and the subject-

level result obtained by majority vote is used for evaluation.

3. Experiments
3.1. Datasets

IEMOCAP is the most widely used dataset in SER field. We
select 5,531 utterances from four emotion categories: angry,
neutral, happy (& excited) and sad. Experiments are conducted
in leave-one-session-out cross-validation strategy.
MELD is another dataset used in SER. It consists of 13,708
utterances with seven emotions. The dataset is split into train,
validation and test sets, and the scores on test set are reported.
Pitt corpus is used in AD detection field. The AD patients and
healthy controls are asked to take the “Cookie Theft” picture de-
scription task [29] to produce recordings. Experiments are con-
ducted in speaker-independent 10-fold cross-validation strategy.
DAIC-WOZ corpus , used in AVEC 2016 [30], contains record-
ings labeled depressed / not depressed. Since the labels of test
data are not provided, we report the results on validation set.

3.2. Experimental setup

Acoustic features. Three types of acoustic features, named
spectrogram (Spec), Log-Mel spectrogram (Logmel) and pre-
trained Wav2vec [31], are extracted in this paper. The window
sizes of Spec and Logmel are set to 20 and 25 ms, respectively.
The number of Mel frequency bands used when extracting Log-
mel is 128 (in IEMOCAP & DAIC-WOZ) and 256 (in MELD
& Pitt). The original hop length hop1 is set to 10 ms by default.
Hyper-parameters. The hyper-parameters used in different
datasets for training are listed in Table 2. SGD [32] is employed
to optimize the model. The number of Transformers N used in
baseline framework is 12. The number of heads used in multi-
head attention is 8. As for the SpeechFormer framework, we
introduce two versions with different model sizes and computa-
tional complexity. Their hyper-parameters are:

• SpeechFormer-S: N1∼N4 = {2, 2, 4, 4}, r = {1, 1, 1}
• SpeechFormer-B: N1∼N4 = {2, 2, 4, 4}, r = {1, 1, 2}
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Table 3: The performances of the baseline and the proposed SpeechFormer on IEMOCAP, MELD, Pitt and DAIC-WOZ corpora.

Feature Architecture Speech emotion recognition: IEMOCAP Speech emotion recognition: MELD
Input size Params FLOPs WA UA Input size Params FLOPs WF1

Spec
Baseline

653×161
1.56M 2.64G 0.572 0.585

449×442
11.77M 7.35G 0.368

SpeechFormer-S 1.64M 0.23G 0.572 0.588 12.35M 1.16G 0.382
SpeechFormer-B 3.25M 0.24G 0.580 0.594 24.53M 1.22G 0.378

Logmel
Baseline

651×128
1.00M 1.94G 0.570 0.584

446×256
3.99M 2.98G 0.389

SpeechFormer-S 1.05M 0.14G 0.578 0.596 4.19M 0.39G 0.389
SpeechFormer-B 2.09M 0.15G 0.582 0.598 8.32M 0.41G 0.396

Wav2vec
Baseline

651×512
15.93M 15.45G 0.618 0.629

446×512
15.93M 9.46G 0.409

SpeechFormer-S 16.72M 2.28G 0.629 0.645 16.72M 1.56G 0.418
SpeechFormer-B 33.21M 2.40G 0.623 0.636 33.21M 1.64G 0.419

Feature Architecture Alzheimer’s disease detection: Pitt Depression classification: DAIC-WOZ
Input size Params FLOPs WA UA Input size Params FLOPs MF1

Spec
Baseline

656×442
11.77M 12.17G 0.692 0.678

1076×161
1.56M 6.10G 0.530

SpeechFormer-S 12.35M 1.70G 0.698 0.695 1.64M 0.37G 0.551
SpeechFormer-B 24.53M 1.78G 0.694 0.686 3.25M 0.39G 0.558

Logmel
Baseline

658×256
3.99M 5.25G 0.680 0.656

1074×128
1.00M 4.60G 0.583

SpeechFormer-S 4.19M 0.58G 0.667 0.645 1.05M 0.24G 0.627
SpeechFormer-B 8.31M 0.61G 0.675 0.669 2.09M 0.25G 0.608

Wav2vec
Baseline

658×512
15.93M 15.67G 0.751 0.746

1074×512
15.93M 31.07G 0.657

SpeechFormer-S 16.72M 2.30G 0.752 0.751 16.72M 3.75G 0.676
SpeechFormer-B 33.21M 2.42G 0.757 0.752 33.21M 3.93G 0.694

3.3. Experimental results and analysis

3.3.1. Comparison to the baseline framework

The comparison results of the proposed SpeechFormer and the
baseline framework on IEMOCAP, MELD, Pitt and DAIC-
WOZ are summarized in Table 3. Speech emotion recognition,
Alzheimer’s disease detection and depression classification
tasks are involved. From Table 3, we can observe that the model
sizes of SpeechFormer-S and baseline are very close, where the
former is slightly larger than the later. However, the theoreti-
cal computational complexity1 (FLOPs) of SpeechFormer-S on
four corpora are about 10.2%, 15.1%, 13.2% and 7.8% of the
baseline, respectively. SpeechFormer-B expands the model size
of SpeechFormer-S by approximately two times, while keep-
ing the FLOPs comparable. While conducting speech emo-
tion recognition, the baseline results are lower than those of
SpeechFormer, regardless of the feature used. When perform-
ing Alzheimer’s disease detection, the baseline achieves better
WA using Logmel as input. In other cases, SpeechFormer ob-
tains higher performances. As for depression classification,
SpeechFormer framework substantially outperforms the base-
line in all cases. In summary, our SpeechFormer framework
generally outperforms the vanilla Transformer-based frame-
work in terms of performance and computational efficiency.

3.3.2. Comparison to previous state-of-the-art

Table 4 gives the comparison among SpeechFormer with some
known systems on four corpora, in which, all systems uti-
lize only speech feature as input to allow a fair comparison.
On IEMOCAP, SpeechFormer-S achieves comparable perfor-
mances to [33]: +0.6% WA. When evaluated on MELD, Pitt and
DAIC-WOZ, SpeechFormer-B outperforms other comparisons
with promising gains: +1.7% WF1 over [20], +1.8% (+11.1%)
WA (UA) over [34] and +3.4% MF1 over [15], respectively.

1We omit Softmax computation in determining complexity.

Table 4: Comparison with known state-of-the-art systems.

Dataset Method WA UA

IEMOCAP

[Guo et al.,2021][8] 0.613 0.604
[Yin et al.,2021][33] 0.623 -

SpeechFormer-S 0.629 0.645
SpeechFormer-B 0.623 0.636

MELD

[Liang et al.,2020][20] 0.402 (WF1)
[Lian et al.,2021][21] 0.382 (WF1)

SpeechFormer-S 0.418 (WF1)
SpeechFormer-B 0.419 (WF1)

Pitt

[Makiuchi et al.,2021][10] 0.731 -
[Bertini et al.,2022][34] 0.739 0.641

SpeechFormer-S 0.752 0.751
SpeechFormer-B 0.757 0.752

DAIC-WOZ

[Solieman et al.,2021][11] 0.610 (MF1)
[Dumpala et al.,2021][15] 0.660 (MF1)

SpeechFormer-S 0.676 (MF1)
SpeechFormer-B 0.694 (MF1)

4. Conclusion
A hierarchical efficient framework, named SpeechFormer, is
proposed for cognitive speech signal processing. The Speech-
MSA and merging block in SpeechFormer model speech signal
by incorporating the features of speech. Experimental results on
four corpora demonstrate the superiority of our SpeechFormer.
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