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ABSTRACT

Speech emotion recognition is a challenging research topic
that plays a critical role in human-computer interaction. Mul-
timodal inputs further improve the performance as more emo-
tional information is used. However, existing studies learn all
the information in the sample while only a small portion of
it is about emotion. The redundant information will become
noises and limit the system performance. In this paper, a key-
sparse Transformer is proposed for efficient emotion recogni-
tion by focusing more on emotion related information. The
proposed method is evaluated on the [IEMOCAP and LSSED.
Experimental results show that the proposed method achieves
better performance than the state-of-the-art approaches.

Index Terms— speech emotion recognition, sparse net-
work, modality interaction

1. INTRODUCTION

Speech emotion recognition (SER) is fast becoming a key in-
strument in human-computer interaction (HCI) [1]. SER also
sheds new light on autism and the elderly care and so on,
which are collectively referred to healthcare [2]. For example,
the people who suffer from severe speech and language dis-
order have difficulty expressing their emotions. An emotion
recognition system can help to treat the patients and improve
their emotional communication skills.

Speech is multimodal as it contains text information by
its nature. Latest researches [3, 4] have also proved that mul-
timodal methods outperform the uni-modal methods. Con-
sequently, multimodal SER has been a hot research topic in
recent years. For example, Yoon et al. [5] use dual recurrent
neural networks to combine the information from audio and
text. In the same way, Krishna et al. [6] use raw audio wave-
form as audio features and GloVe word embeddings as text
features for multimodal learning. Moreover, Peri et al. [7]
combine audio and video information and utilize multitask
setting for emotion recognition. In this paper, we use both
audio and text information for SER.

Pre-trained Self Supervised Learning (SSL) has made
great success in many fields such as natural language pro-
cessing [8, 9] and speech recognition [10]. Meanwhile, recent
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Okay look it ‘s a beautiful day Why are we arguing ?

Fig. 1. The attention weights of the utterance “OK, look it’s a
beautiful day. Why are we arguing?” in vanilla Transformer.
Darker colors represent larger weights.

works [11, 12] that use SSL model have obtained promising
results in SER. Nowadays, wav2vec [10] and RoBERTa [9]
are the most commonly used pre-trained SSL models in the
literature. Thus, in this paper, we use them to extract audio
and text embeddings, respectively.

Inspired by the attention mechanism, Transformer [13],
which is outstanding in modeling long sequence, is proposed
and has achieved great success in natural language process-
ing [11]. Meanwhile, several Transformer based architectures
have been introduced for SER. Tarantino et al. [14] use global
windowing system in Transformer to capture deep relation-
ships within the utterance. Moreover, Huang et al. [15] use
Transformer to fuse different modalities for sentiment analy-
sis. In this paper, we use Transformer as our basic structure
to implement emotion recognition.

However, few works have paid attention to that not all the
information in audio or text is related to emotion. For exam-
ple, considering a text “Okay, look it’s a beautiful day. Why
are we arguing?” in IEMOCAP [16], the attention weights in
vanilla Transformer are shown in Figure 1. We can see that
the attention weights in Transformer are assigned to all the
words. However, words “beautiful” and “arguing” contain
the majority of emotional information in this sentence. And
the words that are not related to emotion such as “it”, “a”
and “look”, are unnecessary for SER task and become noises,
leading to the limitation of system performance. To address
this issue, we propose a novel method, named key-sparse
Transformer (KS-Transformer), to judge the importance of
each word or speech frame in the sample and help the model
focus more on the emotion related information. Based on
KS-Transformer, we further design a cascaded cross-attention
block to fuse different modalities with high efficiency.

The contributions of this paper can be summarized as fol-
lows:
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* We propose KS-Transformer to judge the importance of
each frame or word that helps the model focus more on
the emotional information. Based on KS-Transformer,
we further design a cascaded cross-attention block to
achieve interaction between different modalities.

* We evaluate the proposed method on IEMOCAP and
LSSED, and demonstrate that it achieves better results
than the existing state-of-the-art approaches.

2. PROPOSED METHOD

The proposed model, as shown in Figure 2, mainly consists of
three modules. In which, feature extraction module is used to
learn the input features, modality interaction module is used
for learning interactive information and deep fusion module
aims to further combine the information from audio and text.
Specifically, the first module (gray parts) is based on vanilla
Transformer and the last two modules (yellow parts) are based
on KS-Transformer. More details will be introduced in the
following subsections.
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Fig. 2. Overview structure of the proposed model.

2.1. Key-Sparse Transformer
2.1.1. Vanilla Transformer

Vanilla Transformer consists of encoder and decoder orig-
inally. In this paper, we use Transformer to represent the
encoder part, since it is the one needed for the implementa-
tion of our proposed architecture. The inputs of Transformer
are divided into Q, K and V, which consist of Query, Key
and Value vectors, respectively. The attention mechanism in
vanilla Transformer is depicted as follows:

T

Viq

W = softmax( ) (H
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attn =W xV 2)

where dg is the dimension of the Query vector, W is the
weight matrix and a#fn is the attention output. For multi-head
attention mechanism, we combine the attention outputs from
all the heads. More details can be found in [13].

2.1.2. Key-Sparse attention mechanism

The key-sparse Transformer aims to find the emotional infor-
mation automatically. Assume the number of Query vectors
in Q is i while that of Key vectors in K is j, the key-sparse
attention mechanism is illustrated in Figure 3. It should be
noted that K and V are always the same in Transformer.
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Fig. 3. The key-sparse attention in KS-Transformer. In
which, softmax and summation are performed on each row
and column, respectively. © and ® represent position-wise
multiplication and matrix multiplication, respectively.

Key-sparse attention mechanism, which is used in KS-
Transformer, is capable of judging the importance of each
speech frame or word automatically. As shown in Figure 3,
the weight matrix W is obtained by multiplying Q and K, and
each row in W are the weights of Value vectors in V. As a
Value vector represents a frame in audio or a word in text,
we add up all the weights of the same Value vector and the
summation is used as a discriminator for the importance of
the speech frame or word in the sample. We select k Value
vectors with top-k largest summation and keep their attention
weights in weight matrix unchanged while the others are reset
to zero. This operation makes the weight matrix from dense
to sparse and reduces the redundancy, that’s why we call the
Transformer used here as KS-Transformer. The top-k mask is
calculated by Equation 3.

if 5.
M, = 0 1 s, < threshold 3)
1 if s, > threshold

where threshold is the k'" largest summation and z € [1, j].
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2.2. Modality interaction module

Because modality interaction module is based on cascaded
cross-attention block (CCAB), we introduce CCAB’s struc-
ture first. As shown in the left part of Figure 4, CCAB is
a cascade of two KS-Transformers, in which, the first KS-
Transformer creates Q from modality A and K, V from modal-
ity B. With this special input method, the key-sparse attention
mechanism will find out the most relevant part in B for A and
produce an output which has combined A with B information.
Since the emotional information between different modali-
ties is often complementary [3, 17, 18], neither A nor B can
represent the accurate emotion. Therefore, the second KS-
Transformer in CCAB takes the fused features as input and
considers the information from both modality A and modality
B when applying key-sparse attention. Benefited from CCAB,
A and B are fused more comprehensively and accurately.

Modality interaction module
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Fig. 4. The details of CCAB (left) and modality interaction
module (right).

As shown in the right part of Figure 4, modality interac-
tion module consists of a stack of CCABs, wherein the later
CCARB takes the output of the former CCAB as Q input while
K and V inputs are always from modality B. That the infor-
mation from B goes through one CCAB is regarded as one
interaction because the information from B had flowed into A
by the key-sparse attention. More than one CCAB are applied
for multiple times interactions. A skip connection is utilized
for the features’ stability.

2.3. Deep fusion module

Most researches take the fused features to predict emotions
after the interaction [12, 19]. However, we argue that the
fused features maybe not the best and can be deep fused to
further improve the system performance. In detail, deep fu-
sion module consists of several KS-Transformers, in which,
they take the fused features as input and utilize key-sparse at-
tention to enhance the interaction between audio and text and
implement deep fusion.
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3. EXPERIMENTS

3.1. Database introduction

IEMOCAP contains five sessions, every of which has one
male and one female speaker, respectively. To stay consistent
with the previous works [6, 17, 18], we use 5,531 utterances
from four emotions: angry, neutral, happy (& excited) and
sad. We conduct experiments in leave-one-session-out cross-
validation strategy.

LSSED [20] is a new released large-scale English speech
emotion dataset, which has data collected from 820 subjects
and contains 147,025 samples. Consistent with [20], we use
four emotion categories, including angry, neutral, happy and
sad. For each emotion class, its associated samples are ran-
domly split into train/development/test in ratio of 7/1/2, re-
spectively. Every experiment is run for 10 times to avoid ran-
domness, and the averaged result is used as the final accuracy.

3.2. Experimental setup

The pre-trained wav2vec and RoOBERT2 are available online!.
The max lengths of the audio and text feature sequence are
set to 460 and 20, respectively. SGD optimizer with a learn-
ing rate of 5x10™% on IEMOCAP and 1x10~% on LSSED
is applied to optimize the model. The learning rate drops to
50% of the original every 30 epochs. Dropout with p = 0.5 is
utilized to alleviate over-fitting. The batch size is 32.

Feature extraction module is used to learn the input fea-
tures, which are extracted from pre-trained SSL models, aims
to obtain suitable features for SER task. For modeling rich
contexts, this module is based on vanilla Transformer. Q,
K and V inputs here are the same, which is known as self-
attention [13]. The number of vanilla Transformers in feature
extraction module is 5 and the number of KS-Transformers
in deep fusion module is 2. Eight attention heads are used in
multi-head attention. The number of CCABs used in modality
interaction module will be discussed later.

3.3. Experimental results and analysis
3.3.1. Key-sparse attention analysis

To demonstrate the effectiveness of the key-sparse attention,
we consider a sample in IEMOCAP and compare the atten-
tion weights in vanilla Transformer and KS-Transformer by
visualization. As shown in Figure 5, the vanilla Transformer
takes note of all the words, including the noisy words which
are not related to emotion, and trends to over-fitting. How-
ever, the KS-Transformer makes the connections from dense
to sparse, which is able to ignore most of the noises and focus
more on the emotional information. Meanwhile, the sparsity
in KS-Transformer can reduces the complexity in the model
and alleviates over-fitting.

Uhttps://github.com/pytorch/fairseq
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Fig. 5. Visualization of the attention weights.
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Fig. 6. Effects of hyperparameter k.

To explore the optimal sparsity in KS-Transformer, we
vary k from 0.1 to 0.9. The larger k we set, the less attention
weights are reset to zero and less sparsity we have. Because
LSSED suffers from sample imbalance, we use unweighted
accuracy (UA) as criterion. The results are shown in Figure 6.

Since IEMOCAP is a relatively small corpus, the model is
prone to over-fitting when k is larger than 0.5, causing the UA
scores to remain constant. However, on the large-scale dataset
LSSED, a significant drop is appeared when k is larger than
0.5 because of the redundant information. In contrast, when k
is smaller than 0.5, the model uses too little information and
might converge to an unsatisfactory local minimum. Consid-
ering the UA performance curves on IEMOCAP and LSSED
corpora, k is set to 0.5, which means 50% attention weights
are reset to zero in each KS-Transformer as default.

3.3.2. Multimodal interaction analysis

Modality interaction is vital for multimodal system. To inves-
tigate the effectiveness of the stack of CCABs, we change the
number of CCABs used from zero to four, where zero means
that the modality interaction module is removed, and the re-
sults are shown in Table 1. Weighted accuracy (WA) and UA
are used as criteria. It should be noted that the number of
CCABs used represents the times of interactions performed.
From Table 1, we show that the interaction between dif-
ferent modalities is shallow and insufficient when only one
CCAB is applied. The performance improves as the num-
ber of CCABs increases. The best performances are obtained
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when the number is three, which confirms the effectiveness of
CCAB and the necessity of multiple times interactions.

Table 1. Performances of different number of CCABs in
modality interaction module on IEMOCAP and LSSED.

Amount IEMOCAP LSSED
WA UA WA UA
0 0.726  0.734 | 0.647 0.540
1 0.724 0.735 | 0.648 0.544
2 0.731 0.740 | 0.651 0.554
3 0.743 0.753 | 0.650 0.557
4 0.742 0.751 | 0.648 0.555

3.3.3. Comparison with some known systems

Table 2 gives the performance comparison among the pro-
posed method with some known systems on IEMOCAP and
LSSED, in which, all the systems apply audio and text as in-
puts except that PyResNet [20] only takes audio information.
From Table 2, it can be observed that our method gives
the best WA and UA on IEMOCAP. Moreover, our method
achieves the highest UA on LSSED, where UA is a more im-
portant criterion because of the sample imbalance issue.

Table 2. Comparison results on [IEMOCAP and LSSED.

Dataset Methods Year WA UA
CMA [6] 2020 - 0.728

STSER [18] 2020 0.711 0.721

IEMOCAP GBAN [17] 2020 0.724 0.701
Ours 2021 0.743 0.753
CMA 2020 0.616% 0.489%
STSER 2020 0.651% 0.512*

LSSED PyResNet 2021 0.624 0.429
Ours 2021 0.650 0.557

# LSSED is a new released dataset. Author provides these results
by reproducing the corresponding methods and training and test-
ing them on LSSED dataset.

4. CONCLUSION

In this paper, KS-Transformer, using a novel key-sparse at-
tention mechanism, has been proposed for speech emotion
recognition. Only the emotion related speech frames in au-
dio or words in text can be considered and assigned with at-
tention weights. And based on KS-Transformer, we further
present CCAB to fuse different modalities and achieve deep
interaction. Experimental results on IEMOCAP and LSSED
demonstrate the effectiveness of KS-Transformer and CCAB.
In the future, we plan to combine more modalities to further
improve the system performance.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 18,2022 at 06:34:34 UTC from IEEE Xplore. Restrictions apply.



5. ACKNOWLEDGEMENT

The work is supported in part by the National Natural Science
Foundation of China under Grant U1801262, in part by the
Key-Area Research and Development Program of Guangdong
Province, China, under Grant 2019B010154003, and in part
by the Science and Technology Project of Guangzhou under
Grant 202103010002.

6. REFERENCES

[1] B. W. Schuller, “Speech emotion recognition: Two
decades in a nutshell, benchmarks, and ongoing trends,”
Commun. ACM, vol. 61, no. 5, pp. 90-99, Apr. 2018.

[2] S. Tokuno, G. Tsumatori, S. Shono, E. Takei, T. Ya-
mamoto, G. Suzuki, S. Mituyoshi, and M. Shimura,
“Usage of emotion recognition in military health care,”
in Defense Science Research Conference and Expo
(DSR), 2011, pp. 1-5.

[3] Z. Pan, Z. Luo, J. Yang, and H. Li, “Multi-Modal At-
tention for Speech Emotion Recognition,” in Proc. In-
terspeech 2020, pp. 364-368.

[4] Y. Huang, C. Du, Z. Xue, X. Chen, H. Zhao, and
L. Huang, “What makes multimodal learning better than
single (provably),” arXiv preprint arXiv:2106.04538,
2021.

[5] S. Yoon, S. Byun, and K. Jung, “Multimodal speech
emotion recognition using audio and text,” in 2018 IEEE
Spoken Language Technology Workshop (SLT), 2018,
pp. 112-118.

[6] D. N. Krishna and A. Patil, “Multimodal Emotion
Recognition Using Cross-Modal Attention and 1D Con-
volutional Neural Networks,” in Proc. Interspeech 2020,
pp. 4243-4247.

[71 R. Peri, S. Parthasarathy, C. Bradshaw, and S. Sun-
daram, “Disentanglement for audio-visual emotion
recognition using multitask setup,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2021, pp. 6344-6348.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding,”  arXiv preprint
arXiv:1810.04805, 2018.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“RoBERTa: A Robustly Optimized BERT Pretraining
Approach,” arXiv preprint arXiv:1907.11692, 2019.

6901

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 18,2022 at 06:34:34 UTC from IEEE Xplore. Restrictions apply.

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(191

(20]

S. Schneider, A. Baevski, R. Collobert, and M. Auli,
“wav2vec: Unsupervised pre-training for speech recog-
nition.,” in Proc. Interspeech 2019, pp. 3465-3469.

S. Siriwardhana, T. Kaluarachchi, M. Billinghurst, and
S. Nanayakkara, “Multimodal emotion recognition with
transformer-based self supervised feature fusion,” IEEE
Access, vol. 8, pp. 176274-176285, 2020.

S. Siriwardhana, A. Reis, R. Weerasekera, and
S. Nanayakkara, “Jointly Fine-Tuning “BERT-Like”
Self Supervised Models to Improve Multimodal Speech
Emotion Recognition,” in Proc. Interspeech 2020, pp.
3755-3759.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Pro-
cessing Systems, 2017, pp. 5998-6008.

L. Tarantino, P. N. Garner, and A. Lazaridis, “Self-
Attention for Speech Emotion Recognition,” in Proc.
Interspeech 2019, pp. 2578-2582.

J. Huang, J. Tao, B. Liu, Z. Lian, and M. Niu, “Multi-
modal transformer fusion for continuous emotion recog-
nition,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2020, pp.
3507-3511.

C. Busso, M. Bulut, C.-C Lee, A. Kazemzadeh,
E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S.
Narayanan, “Iemocap: Interactive emotional dyadic
motion capture database,” Language Resources and
Evaluation, vol. 42, no. 4, pp. 335-359, 2008.

P. Liu, K. Li, and H. Meng, “Group Gated Fusion
on Attention-Based Bidirectional Alignment for Mul-
timodal Emotion Recognition,” in Proc. Interspeech
2020, pp. 379-383.

M. Chen and X. Zhao, “A Multi-Scale Fusion Frame-
work for Bimodal Speech Emotion Recognition,” in
Proc. Interspeech 2020, pp. 374-378.

T. Mittal, U. Bhattacharya, R. Chandra, A. Bera, and
D. Manocha, “M3er: Multiplicative multimodal emo-
tion recognition using facial, textual, and speech cues,”
Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 34, no. 02, pp. 1359-1367, Apr. 2020.

W. Fan, X. Xu, X. Xing, W. Chen, and D. Huang,
“Lssed: A large-scale dataset and benchmark for speech
emotion recognition,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2021, pp. 641-645.



