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Abstract
Speech Emotion Recognition (SER) is an important com-

ponent for human-computer interaction. Recently, various op-
timized Transformer variants have been applied to SER. How-
ever, most of studies use all the information in the sample and
tend to overlook local details, making it difficult to perceive
emotional information that is present locally in speech. While
there are studies exploring how to utilize local information, their
approaches are not flexible enough or are overly complex. To
address the issues, we propose DropFormer, a new architec-
ture that focuses only on the emotional segments by dynami-
cally dropping non-emotional information. DropFormer con-
sists of two main components: (1) Drop Attention, proficient in
capturing local emotion and highlighting emotion-related seg-
ments, (2) Token Dropout Module, capable of dropping tokens
lacking emotional information. Experimental results show that
our DropFormer achieves state-of-the-art performance on the
IEMOCAP and MELD benchmarks.
Index Terms: speech emotion recognition, transformer, atten-
tion machanism

1. Introduction
Human emotion plays a critical role in communication. Speech
Emotion Recognition (SER), an essential tool to inform intelli-
gent systems about the feelings of users [1, 2], is widely used
in numerous applications, such as intelligent robots, automated
call centers, and distance education [3, 4].

Since human emotions are complex and nuanced, re-
searchers have worked hard to improve system performance in
various ways. [5] suggested traditional emotion labels oversim-
plify the problem and proposed to use word embeddings ob-
tained from a Language Model (LM) as labels for SER. [6] ar-
gued that stacking convolutions overlooks global information
and improved it by combining attention mechanism. [7] pro-
posed that multi-view Speech Emotion Recognition is complex
and suggested learning emotion-related information from two
feature views using a concise method. Different from the above
directions aiming to enhance SER, Transformer [8], as an effi-
cient architecture, attracts researchers in the field of SER.

Attention-based Transformer [8, 9, 10, 11] has become the
dominant backbone in natural language processing (NLP) and
computer vision (CV). However, its applications to the SER
task remain limited because human emotions are inherently
complex and ambiguous. The attention mechanism is the core
of the Transformer, which empowers Transformer to capture
long-range dependency via the global receptive field. However,
the full attention mechanism computes pairwise token affinity
across all spatial locations, which overlooks that not all the in-
formation in audio is related to emotion. As shown in Figure 1,
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Figure 1: The utterance “I’m so happy for you. [LAUGH-
TER]” from IEMOCAP. Speech segments with strong emo-
tions (indicated by dark colours) should be given more atten-
tion weight, while non-emotional speech segments (indicated by
light colours) should be given less weight.

considering a sample “I’m so happy for you. [LAUGHTER]” in
IEMOCAP [12], the tone fluctuates at the end of the utterance
because of the laughter. In addition, the segment corresponding
to “happy” is spoken with stress. Therefore, these segments in
the sample convey the majority of emotional information. How-
ever, the segments with flat tone, such as “I’m” and “you”, con-
tain little emotional information and are useless to the SER sys-
tem. Consequently, the full attention mechanism employed in
the vanilla Transformer is suboptimal for the SER tasks.

To alleviate the above problem, a promising solution is to
change the receptive field manually. Li et al. [13] applied static
attention windows across multiple time scales. However, these
fixed windows lack the flexibility to capture emotional segments
with various durations. There are also works trying to dynami-
cally constrain the attention scopes [14, 15, 16]. However, [14]
relied on an additional decision network to determine the size
and the position of the window. [15] processed local and global
information asynchronously, which complicated the overall sys-
tem. [16] retained weights on all queries, making the model
sensitive to the non-emotional information.

In this work, we propose a dynamic Transformer, named
DropFormer, for SER. DropFormer is mainly composed of
Drop Attention and Token Dropout Module. Specifically, Drop-
Former employs Drop Attention to process local and global
information synchronously without introducing additional net-
works. Token Dropout Module dynamically drops noise tokens,
which also reduces the computational costs. The contributions
can be summarized as follows:
• We introduce the Drop Attention, which is proficient in cap-

turing local emotion and dynamically highlighting emotion-
related segments.

• We introduce the Token Dropout Module, dropping tokens
lacking emotional information in speech to reduce the impact
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Figure 2: The left side shows that DropFormer consists of four layers of DropFormer Blocks, with each layer discards noise tokens
proportionally, the deeper the color, the more important the token is. On the middle side, the details of the DropFormer Block are
presented. We introduce Drop Attention to focus on emotion and Token Dropout Module to discard noise. The right side shows the
details of Drop Attention, S represent a discriminator for the importance of each token, ⊙ and ⊗ represent position-wise multiplication
and matrix multiplication, Md and Ms represent dynamic mask and static mask, respectively.

of noise and improve the model efficiency.
• Experimental results show that our DropFormer achieves

state-of-the-art performance on the IEMOCAP and MELD
[17] benchmarks.

2. Methodology
The proposed DropFormer, which is composed of multiple
stacked DropFormer Blocks, is illustrated in Figure 2. Each
DropFormer Block consists of a Drop Attention module and a
Token Dropout Module. In which, the Drop Attention module
dynamically focuses on the emotional information in the input
speech signal, and the Token Dropout Module is used to remove
the non-emotional tokens progressively. More details will be in-
troduced in the following subsections.

2.1. Drop Attention

Drop Attention (DA), illustrated on the right side of Figure 2,
is at the core of the proposed DropFormer. Different from the
previous attention mechanisms [13, 14, 16], DA is able to cap-
ture local details while dynamically focusing on the emotional
information in the global context.

The inputs of DropFormer are first linearly projected into
Q, K, and V , which represent Query, Key, and Value vectors,
respectively. Subsequently, the weight matrix W is computed
as the normalized dot product between the Q and K:

W = softmax(
QKT√

dQ
) (1)

where dQ is the dimension of the Query vector. Inspired by
[16], DA utilizes the attention weights in W to calculate the im-
portance of each token. We note that the elements in the same
column of the weight matrix W are utilized to weight the corre-
sponding value vector. This implies that the elements in the l-th

column of the weight matrix W indicate the importance of the
l-th token. By summing up the weights column by column, the
resulting summation S serves as a discriminator for the impor-
tance of each token. The indices of the top-k largest value in S
are recorded as n1, n2,..., nk, indicating the positions that con-
tain the most emotional information in the speech. The dynamic
mask (Md) is defined as:

mab =

{
1 if a ∈ N and b ∈ N
0 else

,mab ∈ Md (2)

where mab is the element in row a and column b of the Md, and
N represents the set of n1, n2,..., nk.

The proposed Md resets the attention output of the unim-
portant frames to zero while maintaining the attention output
of the important frames. Therefore, the Md can determine the
emotional positions in the global perspective and enable dy-
namic modeling of speech emotion.

To better capture the local information in speech, we intro-
duce a static mask (Ms). Specifically, emphasizing the diagonal
of the weight matrix W , which represents the local weights of
each query vector, helps the model capture local information.
We also set parts of Ms to 0 to make it sparser and avoid re-
dundant due to the similarity between adjacent speech frames.
The Ms is illustrated in Figure 3. Empirically, the similarity
between adjacent speech frames of pre-trained features is high,
but after going through the encoder, the similarity will decrease.
What’s more, the proposed Token Dropout Module (described
in the following subsection) is able to concentrate on emotional
frames by discarding ‘noise’ frames, we expanded the diagonal
on the last two layers.

Finally, we perform a bitwise or operation (∨) on the cor-
responding elements of the Md and Ms to obtain the final mask
M .

M = Md ∨ Ms (3)
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Figure 3: Ms on different DropFormer layers. Compared to the
first two layers, we expand the diagonal on the last two layers
to accommodate the variation of the pre-trained features as they
pass through the encoder.

The output of DA is calculated as follow:

attn = (W ·M)× V (4)

2.2. Token Dropout Module

DA is utilized to help the model focus on emotional information
in speech. To further mitigate the impact of noise on the system
and enhance model efficiency, we propose the Token Dropout
Module (TDM), which filters out non-emotional tokens. The
structure of the TDM is depicted in Figure 4.

s1 s2 s3 … sj

Drop

Drop Attention

0 1 0 … 1

Bottom k

S

Figure 4: TDM determines the discarded tokens based on S
from the DA. The deeper the color, the more important the token
is. For simplicity, the residual connection and layer normaliza-
tion are not plotted.

TDM reuses the vector S from the DA, which represents the
importance of each speech frame. Feature x from DA removes
noise through TDM, which is defined as:

Indicesk = Bottom k(S) (5)

TDM(x) = Drop(x,Mask(Indicesk)) (6)

where Bottom k represents the operation of getting the in-
dices of the first k minimum values of the vector S from DA,
Mask denotes setting the index positions to 1 and the remaining
positions to 0, Drop means dropping the token marked 1 in the
Mask from x to get the output of TDM.

Moreover, the TDM in DropFormer helps reduce the com-
putational cost by reducing the length of the token sequence.

3. Experiments
3.1. Datasets

IEMOCAP dataset is used following the same way as in pre-
vious studies [13, 15, 16, 14]. We merge excitement into hap-
piness category and select 5,531 utterances from happy, angry,
sad and neutral classes. The experiments are conducted using
the leave-one-session-out cross-validation strategy.

MELD comprises 13,708 utterances across 7 emotion
classes. It is officially divided into training, validation, and test-
ing sets. We use the validation set for hyperparameters tuning,
and present the scores on the testing set.

3.2. Experiment Setup

Pre-trained self-supervised WavLM [18] is adopted to extract
the acoustic features. SGD optimizer with a learning rate of
5e−4 is used for IEMOCAP, and Adam optimizer with a learn-
ing rate of 1e−3 is used for MELD to optimize the model, train-
ing for 100 and 120 epochs, respectively. The learning rate is
adjusted using the cosine annealing schedule. The batch size is
32. The number of DropFormer blocks is 4.

In DA, the Keep Rate (KR) for emotional tokens in each
layer is set to 10%. The larger KR we set, the less attention
weights are reset to zero. In TDM, the Drop Rate (DR) for
‘noise’ tokens in each layer is set at 10%, resulting in Drop-
Former dropping 35.39% of tokens in total.

In IEMOCAP, we use Weighted Accuracy (WA) and Un-
weighted Accuracy (UA) as metrics, which helps us analyze
model performance taking class distribution into account. In
MELD, we use Weighted F1 (WF1) as metric, contributing to
the comprehensive evaluation of models.

3.3. Experimental Results and Analysis

3.3.1. Ablation Study

This section presents ablation studies to illuminate the effect of
each component of DropFormer. As demonstrated in Table 1,
we conduct a comprehensive component analysis by iteratively
replacing each component with one from the full DropFormer
and evaluating the resultant performance. Specifically, in set-
ting (1), the TDM in DropFormer has been removed; in set-
ting (2), the DropFormer is replaced with a Transformer that
only uses the proposed Ms;in setting (3), the DropFormer is re-
placed with a Transformer that only utilizes the proposed Md;
and in setting (4), DA is removed from DropFormer. Overall,
the model performance exhibits a considerable decline as each
component is replaced, verifying the efficacy of the proposed
components.

We also compare the DropFormer with the vanilla Trans-
former. The results reported in Table 1 show that in IEMO-
CAP, DropFormer substantially surpasses the vanilla Trans-
former with a 2.4% improvement in WA and a 2.53% improve-
ment in UA.

3.3.2. Comparison with Some Known Systems

We compare the DropFormer with the lastest known systems
on the IEMOCAP and MELD datasets. From Table 2, it can
be seen that our method gives the best WA and UA on IEMO-
CAP, outperforming not only the latest Transformer variants
applied to the SER[19, 13, 14, 15], but also over other recent
research[5, 7, 6, 20] dedicated to improving the SER. Further-
more, our method achieves the highest WF1 on MELD.
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Table 1: Ablation results of the DropFormer’s core components
on the IEMOCAP.

Model WA UA
DropFormer (Ours) 75.29 76.60

DropFormer (Ours) w/o TDM 74.95 76.20
DropFormer (Ours) w/o TDM & Md 75.13 75.85
DropFormer (Ours) w/o TDM & Ms 74.72 75.36

DropFormer (Ours) w/o DA 74.06 74.52
Vanilla Transformer 72.89 74.07

Table 2: Comparison with known state-of-the-art systems on
IEMOCAP and MELD.

IEMOCAP
Method Year WA UA

Word embeddings [5] 2023 68.47 69.68
SpeechFormer++ [19] 2023 70.50 71.50

MSTR [13] 2023 70.60 71.60
DST [14] 2023 71.80 73.60
DCW [7] 2023 72.08 72.17

DWFormer [15] 2023 72.30 73.90
GLRF [6] 2023 72.81 73.39

SMW CAT [20] 2023 73.80 74.25
DropFormer (Ours) 2024 75.29 76.60

MELD
Method Year WF1

MSTR [13] 2023 46.15
SpeechFormer++ [19] 2023 47.00

DWFormer [15] 2023 48.50
DST [14] 2023 48.80

DropFormer (Ours) 2024 49.25

3.3.3. Model Hyperparameter Analysis

The ablation study validates the effectiveness of DA and TDM.
Therefore, it is necessary to analyze the relationship between
KR (the hyperparameter determining DA) and DR (the hyper-
parameter determining TDM). As illustrated in Figure 5, on
IEMOCAP, we examine the effect of different KR and DR val-
ues on DropFormer. We show part of the results in the figure
(both KR and DR are less than 0.5) because they reflect the reg-
ularity while giving a concise picture. As shown by the high-
est point of the blue line, DropFormer achieves the best perfor-
mance when KR = 0.1 and DR = 0.1, meaning a total of 34.39%
of tokens are discarded. This shows that focusing on emotional
information and discarding noise tokens is an effective way to
improve emotion recognition. In addition, as KR increases, sys-
tem performance decreases. This indicates that the DA captures
the noise beyond the emotional information, which is detrimen-
tal to performance. When DR reaches 0.1, the performance of
DropFormer decreases as DR increases. However, as KR in-
creases, the trend of performance decrease slows down. This
implies that the TDM, which discards information exceeding
the proportion of noise, is harmful to performance. The more
information captured dynamically by DA, the greater the toler-
ance for discarding information.

3.3.4. Visualization Analysis

To visually measure DropFormer’s capabilities in dynamically
highlighting emotion-related segments (effectiveness of DA)
and dropping tokens lacking emotional information (effective-
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Figure 5: The relationship between KR and DR. We use UA as
a metric to account for category imbalance.

I’m so happy for you [laughter]

Transformer
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Figure 6: The attention weights of the utterance “I’m so happy
for you. [LAUGHTER]” from IEMOCAP. Compared to the
vanilla Transformer, the proposed DropFormer focus on emo-
tional segments and discard noise.

ness of TDM). We intuitively compare the attention weights in
each attention mechanism by visualization, as depicted in Fig-
ure 6. The weight of full attention is distributed on all tokens
of the speech, and worse, mainly on the fragment ’you’, which
is inevitably affected by noise and hard to grasp the emotional
segments. However, DropFormer concentrates on emotional
segments (centered on ’happy’ and [laughter]) and sets part of
the weight of the noise segment (centered on ’I’m’ and ’you’)
to 0, successfully learning emotions dynamically and discard-
ing noise. The above results intuitively validate the efficacy of
DA to focus on emotional information and the TDM to discard
noise.

4. Conclusions

In this paper, we propose DropFormer, a new architecture de-
signed to focus only on emotion-related segments. Its core is the
Drop Attention mechanism, proficient at capturing local emo-
tion and dynamically highlighting emotion-related segments. It
also contains the Token Dropout Module, capable of dropping
tokens lacking emotional information. Experimental results on
the IEMOCAP and MELD corpora demonstrate the effective-
ness of the proposed DropFormer. Ablation studies confirm the
effectiveness of both the Drop Attention mechanism and the To-
ken Dropout Module. In the future, we plan to investigate how
to capture more emotional details in speech to further improve
the system performance.
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