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ABSTRACT
Speech emotion recognition is crucial to human-computer in-
teraction. The temporal regions that represent different emo-
tions scatter in different parts of the speech locally. More-
over, the temporal scales of important information may vary
over a large range within and across speech segments. Al-
though transformer-based models have made progress in this
field, the existing models could not precisely locate important
regions at different temporal scales. To address the issue, we
propose Dynamic Window transFormer (DWFormer), a new
architecture that leverages temporal importance by dynami-
cally splitting samples into windows. Self-attention mecha-
nism is applied within windows for capturing temporal impor-
tant information locally in a fine-grained way. Cross-window
information interaction is also taken into account for global
communication. DWFormer is evaluated on both the IEMO-
CAP and the MELD datasets. Experimental results show that
the proposed model achieves better performance than the pre-
vious state-of-the-art methods.

Index Terms— speech emotion recognition, transformer,
speech signal processing

1. INTRODUCTION

Speech Emotion Recognition (SER) is the key to human-
computer interaction. To make human-computer interaction
more natural, it is essential for machines to precisely capture
emotions and respond in an appropriate manner.

SER has been studied for decades. In recent years,
transformer-based models have fostered huge improvement
in SER field [1, 2, 3, 4]. The vanilla transformer [5] is out-
standing in modeling long-range dependencies in speech se-
quences. However, its core mechanism, global self-attention
mechanism, is vulnerable to noise and may not be able to
focus on the same areas as the location of the emotion [1].
This limits the effectiveness of the transformer model. Sound
events that prominently represent emotions, such as changes
in intonation and speed, laughs and sighs, are located in local
regions. Furthermore, the scales of important information are
varied over a large range within and across speech segments
(see Fig. 1). [2] applies local window attention mechanism
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Fig. 1. Two examples are selected from IEMOCAP[6]. [lau]
represents laughter. Important sound events that indicates dif-
ferent emotions, such as laughter, sigh, sniffle and positive
semantics etc., exist in local regions of speech and their dura-
tion varies.

to enable models to focus more on local changes. However,
immutable window lengths limit these models to capture sen-
timent information that varies with different temporal scales.

In computer vision field, dynamic designs [7, 8, 9] al-
low models to have a flexible perceptual field so that dif-
ferent shapes of targets can be captured. In SER field, [10,
11, 12] propose local-global architectures to capture impor-
tant temporal information. Inspired by them, a new archi-
tecture named Dynamic Window transFormer (DWFormer)
is proposed to solve the aforementioned problem. The core of
the proposed architecture, the DWFormer block, is composed
of a Dynamic Local Window Transformer (DLWT) module
and a Dynamic Global Window Transformer (DGWT) mod-
ule. DLWT dynamically divides the input feature into sev-
eral scales of windows and captures local important informa-
tion in each window. DGWT remeasures the importance be-
tween windows after DLWT. The combination of DLWT and
DGWT helps the model discover task-relevant regions. The
main contributions of this paper are as follows:

(i) A new architecture, named Dynamic Window trans-
Former (DWFormer), is proposed to provide insights into the
problem of capturing important temporal information of vari-
able lengths for SER.

(ii) We evaluate DWFormer on both the IEMOCAP and
MELD [13] datasets and demonstrate that DWFormer sub-
stantially outperforms the vanilla transformer and the fixed
window transformer. Besides, DWFormer achieves compara-
ble results to the conventional studies and the state-of-the-art
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Fig. 2. Model architecture of DWFormer. For simplicity, the residual connection and layer normalization are not plotted in the
figure. IC represents Importance Calculation module (detailed in Fig. 3). The triangular sequence impt means the important
weights. The deeper the color, the more important the token is. The rectangle sequence x represents feature map.

approaches. The code will be published.1

2. METHODOLOGY

The architecture of DWFormer is shown in Fig. 2. The core
of the model architecture is the DWFormer block, which is
made up of a Dynamic Local Window Transformer module
and another Dynamic Global Window Transformer module.
The components of the model are introduced below.

The input audio signal is first fed into the feature extrac-
tor to extract the features x0 ∈ RT×D, where T represents
the number of feature tokens, D represents the feature dimen-
sion. Then x0 is passed through a vanilla transformer encoder
layer. The outputs of the encoder layer consists of the hidden
feature x11 and attention weights W ∈ RH×T×T where H
represents the number of heads. W is sent into the Impor-
tance Calculation module to obtain an temporal importance
estimation which is necessary for the 1st DWFormer block.

2.1. Importance Calculation Module

The Importance Calculation (IC) module is proposed to mea-
sure the importance of token. Inspired by [1], IC module uti-
lize the attention weights obtained from transformer for cal-
culation. The process is shown in Fig. 3, which is described
as:

impt = Softmax[

T1∑
1

(
1

H

H∑
s=1

aws)] (1)

where aws represents attention weight from s-head, T1 is the
row length of the averaged matrix awavg . Softmax function

1https://github.com/scutcsq/DWFormer

is used for normalization.
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Fig. 3. The IC module calculates the importance from the
attention weights.

The importance score of each token impt11 obtained by
IC module, together with the hidden feature x11 are then
transferred to N stacked DWFormer blocks for further evalu-
ation.

2.2. DWFormer Block

2.2.1. Dynamic Local Window Transformer Module

The Dynamic Local Window Transformer (DLWT) module
dynamically partitions regions for input feature and captures
important information through local relationship modeling.
The procedure is elaborated as bellows.

Firstly, utilizing dynamic window splitting(DWS) oper-
ation, feature tokens are dynamically split into unequal-length
windows according to their importance values obtained from
the IC component. As shown in Fig. 4, based on the impor-
tance scores calculated from the former block, tokens with
importance scores above/below the threshold are grouped
chronologically into several strong/weak emotional correla-
tion windows. The threshold is set to the median of all the
importance values. A strong emotional correlation windows



and B strong emotional correlation windows are obtained
from xa1.

To process data in batches, the window division results
are implemented by attention mask mechanism:

Mij =

 0, (bwk
≤ i ≤ ewk

, bwk
≤ j ≤ ewk

k = 1, ..., A+B)
−∞, otherwise

(2)

where Mij is the value of ith row and jth column of the at-
tention mask M ∈ RT×T . bwk

and ewk
are the begin and the

end indexes of the row and column of the kth window.
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Fig. 4. The operation of dynamic window splitting.

Then, each window passes through a transformer encoder
for intra-window information communication, which is de-
fined as:

DLWT (xa1) = FFN(Softmax(
Qa1K

T
a1√

dh
+M)Va1) (3)

where FFN represents Feed Forward Network, Qa1, Ka1,
Va1 are the projection mapping of the feature xa1, T means
transposition operation, dh is a scaled factor.

For the weak emotional correlation windows, the prior
knowledge learned from the former block indicates that they
have a high probability to be redundant for emotion recogni-
tion, so the features of the tokens located in them are mul-
tiplied by a weight λ(≤ 1), while those in strong emotional
correlation windows are multiplied by 1. The output is de-
fined as xa2 ∈ RT×D.

Temporal importance of each token within window is cal-
culated by IC module. Calculation results of all windows are
then concatenated together into a sequence along the chrono-
logical order, which is noted as impta2 ∈ RT . xa2 and
impta2 are passed to Dynamic Global Window Transformer
module for further operation.

2.2.2. Dynamic Global Window Transformer Module

Dynamic Global Window Transformer (DGWT) module
takes a holistic approach to remeasure the importance re-
lationship between windows after DLWT. In detail, each
window firstly generates a token through Window Weighted
Sum operation, which is defined as:

wtk =

ewk∑
p=bwk

impta2p × xa2p (4)

where p is the index of the token. wt ∈ R(A+B)×D is the
sequence of window tokens.

Then the sequence wt is passed through a transformer en-
coder for global interaction, which is defined as:

DGWT (wt) = FFN(Softmax(
QwtK

T
wt√

dh
)Vwt) (5)

where Qwt, Kwt, Vwt are the projection mapping of wt.
Next, each window token is upsampled to the same length

of the corresponding window by copying the vectors of the
window. Then these tokens are concatenated together into a
sequence, which is noted as xa3 ∈ RT×D. The output of a
DWFormer block x(a+1)1 is the summation of xa2 and xa3 so
that each token obtains both local and global information.

The importance scores between windows impta3 ∈
RA+B are calculated by IC. Through a DWFormer block,
the importance of each token impt(a+1)1 is remeasured by:

impt(a+1)1 = Softmax(impta2 × Upsampling(impta3)) (6)

the upsampling operation is the same as mentioned above.
In the next DWFormer block, x(a+1)1 is split into win-

dows based on impt(a+1)1. Finally, the emotion classification
is performed by applying the temporal average pooling layer
on the output feature x(N+1)1 of the N th DWFormer block,
followed by a multi layer perception classifier.

3. EXPERIMENT

3.1. Experiment Setup

We evaluate DWFormer on IEMOCAP and MELD datasets.
On IEMOCAP dataset, DWFormer is evaluated using 5-fold
leave-one-section-out cross validation. 4 emotions (happy
&excited, angry, sad and neutral) are selected for classifica-
tion. Weighted Accuracy (WA) and Unweighted Accuracy
(UA) are the measuring metrics. On MELD corpus which
contains 7 emotions (anger, disgust, fear, joy, neutral, sad-
ness, surprise), the Weighted F1 (WF1) score is reported on
test set.

The output feature of the 12th transformer encoder layer
of Pre-trained WavLM-Large[14] model is used as the audio
feature. The number of DWFormer blocks for IEMOCAP
is 3 and for MELD is 2. The number of heads is 8. The
activation function is ReLU. The number of batchsize is 32.
The learning rate is initialized to be 3e-4 for IEMOCAP, while
5e-4 for MELD. The value of λ is 0.85. We employ an SGD
optimizer for 120 epochs using a cosine decay learning rate
scheduler with cosine warm-up scheduler. The optimization
function is Cross Entropy Loss.

3.2. Comparison to Baseline Networks

The vanilla transformer, together with fixed window trans-
former which splits input feature into equal-length windows



and applies self-attention within each window, are selected as
the baseline networks. The parameters of baseline networks
are the same as DWFormer. The window length of fixed win-
dow transformer is the same as the average length of the win-
dows in the DWFormer. To verify the validity of the modules
from DWFormer, ablation experiments are also conducted.

Results in Table 1 demonstrate that DWFormer outper-
forms the Vanilla transformer and the fixed window trans-
former on both IEMOCAP and MELD datasets. Meanwhile,
removing either the DLWT or the DGWT modules from DW-
Former causes a significant decrease.

Model IEMOCAP MELD
WA(%) UA(%) WF1(%)

Vanilla Transformer 70.7 71.9 47.1
Fixed Window Transformer 71.2 72.3 47.6

DWFormer (Ours) w/o DLWT 71.5 72.4 47.8
DWFormer (Ours) w/o DGWT 71.5 72.7 47.7

DWFormer (Ours) 72.3 73.9 48.5

Table 1. Comparison results to baseline networks.

3.3. Comparison to conventional research& Visualization

Since our model employs the local-global architecture, we
have conducted the comparison experiment with the conven-
tional studies. [10] is open-source, so we first reproduce the
results of [10] to ensure the correctness of the codes, and then
we test the model under our experimental settings (Exp 1).
Since the codes of [11, 12] are not publicly available, we test
our model under the experimental settings described in their
papers(Exp 2: randomly split to 80% training set and 20%
testing set). Experimental results are shown in Table 2, which
demonstrate the superiority of our model compared with the
other conventional studies.

Experimental Setting Model IEMOCAP MELD
WA(%) UA(%) WF1(%)

Exp 1 [10] 59.6 60.5 39.8
DWFormer (Ours) 72.3 73.9 48.5

Exp 2
[11] 69.4 70.2 -
[12] 70.3 70.8 -

DWFormer (Ours) 76.3 77.2 -

Table 2. Comparison results to the other conventional studies.

In addition, Visualization results are shown in Fig. 5. As
shown in Fig. 5, Vanilla Transformer, Fixed Window Trans-
former and ATDA are not as good as ours in locating impor-
tant temporal information.

3.4. Comparison to Previous State-of-the-art Methods

Table 3 shows the comparison results between previous state-
of-the-art methods and DWFormer. Experimental results
prove that our method outperforms previous state-of-the-art
methods.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

[laughter]
0.00 1.17

thanks y ythanks that’ll be cool
1.50 1.66

[noise]
2.12 2.59 2.69 3.12 3.30 3.59

[lau]
3.83

[s]
4.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Fixed Window Transformer

DWFormer(ours)

Vanilla Transformer

oh
0.83

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0 0.24 0.48 0.72 0.96 1.2 1.44 1.68 1.92 2.16 2.4 2.64 2.88 3.12 3.36 3.6 3.84
ATDA

Fig. 5. Visualization results of vanilla transformer, fixed win-
dow transformer, ATDA and DWFormer are shown. Horizon-
tal axis indicates the chronological order and vertical axis is
of importance score. [s] means silence, [lau] means laughter,
y means ’yes’. Areas that are required to focus on are indi-
cated by yellow borders, such as laughter, accent (’thanks’),
positive semantic(’cool’). Blue borders represent the area that
should not be attended to, such as noise and silence.

Dataset Model WA(%) UA(%) WF1(%)

IEMOCAP

[Chen et al., 2022][2] 62.9 64.5 -
[Li et al. 2022][15] 68.0 68.2 -

[Zou et al., 2022][16] 69.8 71.1 -
DWFormer(Ours) 72.3 73.9 -

MELD

[Chudasama et al., 2022][17] - - 35.8
[Chen et al., 2022][2] - - 41.9
[Lian et al., 2022][18] - - 45.2

DWFormer (Ours) - - 48.5

Table 3. Comparison results to previous state-of-the-art
methods.

4. CONCLUSIONS

We propose a new transformer-based framework, DWFormer,
which aims at capturing important temporal regions at vari-
able scales within and across samples in SER field. We em-
pirically demonstrate that DWFormer outperforms the previ-
ous state-of-the-art methods. Ablation study proves the effec-
tiveness of DLWT and DGWT modules. With the ability to
locate important information, we plan to apply DWFormer in
the pathological speech recognition field to assist researchers
in understanding the impact of disease on pronunciation.
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